PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection
نویسندگان
چکیده
The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The function of the IFN-γ-inducible proteasome regulator subunits PA28 α and β, however, in this context was unknown. During viral myocarditis, we found an increased abundance of PA28β subunits in heart tissue. PA28α/β exists in PA28-20S-PA28 and PA700-20S-PA28 hybrid proteasome complexes in cells both with either predominant ip and standard proteasome (sp) expression. Being in line with reduced proteasome activity in PA28α/β-deficient cells, we observed increased levels of oxidized and poly-ubiquitinated proteins upon TLR3-activation in these cells. Moreover, PA28α/β is capable to interfere directly with viral replication of CVB3 and facilitates the generation of CVB3-derived MHC class I epitopes by the proteasome. In contrast to a distinct function of PA28α/β in vitro, gene ablation of PA28α/β in mice being on a genetic background with resistance towards the development of severe infection had no significant impact on disease progression. Other than reported for the ip, in this host PA28α/β is dispensable to meet the demand of increased peptide hydrolysis capacity by the proteasome during viral myocarditis.
منابع مشابه
Effect of Activation and Inhibition of Cellular PKR on Coxsackievirus B3 Replication
The ds-RNA activated protein kinase (PKR) is a serine-threonine kinase with MW of 68 KDa. It belongs to a family of kinases that control one of the translational initiation factors, eIF2. PKR is produced at high level in response to viral infection. This protein by phosphorylating eIF2 inhibits cellular protein synthesis. In this study, the effect of gamma interferon (IFN-γ), an activator, and ...
متن کاملCoxsackievirus B3 protease 3C induces cell death in eukaryotic cells
Abstract: Coxsackievirus B3 (CVB3) is the most common agent known to cause viral myocarditis. The viral genome encodes a single polyprotein that is cleaved to produce several proteins by virally encoded proteases. Most of this proteolytic processing is catalyzed by a cysteine protease called 3C. The 3C protease plays major role in viral replication and cellular damage. To understand the mecha...
متن کاملCloning and Expression of Protease 2A from Coxsakievirus B3
Protease 2A (2Apro) of coxsackievirus B3 (CVB3) plays a major role in viral replication. In case of infection, viral proteins are being synthesized from viral mRNA using host biosynthesis machinery. 2Apro of virus, after being synthesized, exhibits two critical functions, cleavage of viral proteins and breaking eukaryotic initiation factor 4G. The enzyme plays an essential role in viral replic...
متن کاملAutophagosome supports coxsackievirus B3 replication in host cells.
Recent studies suggest a possible takeover of host antimicrobial autophagy machinery by positive-stranded RNA viruses to facilitate their own replication. In the present study, we investigated the role of autophagy in coxsackievirus replication. Coxsackievirus B3 (CVB3), a picornavirus associated with viral myocarditis, causes pronounced intracellular membrane reorganization after infection. We...
متن کامل